High-order arbitrary Lagrangian–Eulerian discontinuous Galerkin methods for the incompressible Navier–Stokes equations
نویسندگان
چکیده
This paper presents robust discontinuous Galerkin methods for the incompressible Navier-Stokes equations on moving meshes. High-order accurate arbitrary Lagrangian-Eulerian formulations are proposed in a unified framework both monolithic as well projection or splitting-type solvers. The is flexible, allows implicit and explicit of convective term, adaptive time-stepping. with ALE transport term solved deformed geometry storing one instance mesh that updated from time step to next. Discretization space applied discrete so all weak forms mass matrices evaluated at end current step. design ensures fulfill geometric conservation law automatically, shown theoretically demonstrated numerically by example free-stream preservation test. We discuss peculiarities related imposition boundary conditions intermediate steps projection-type ingredients needed preserve high-order accuracy. show this work maintain formal order accuracy Moreover, we demonstrate robustness under-resolved turbulent flows.
منابع مشابه
High-order Discontinuous Galerkin Methods for Incompressible Flows
Abstract. The spatial discretization of the unsteady incompressible Navier-Stokes equations is stated as a system of Differential Algebraic Equations (DAEs), corresponding to the conservation of momentum equation plus the constraint due to the incompressibility condition. Runge-Kutta methods applied to the solution of the resulting index-2 DAE system are analyzed, allowing a critical comparison...
متن کاملStaggered discontinuous Galerkin methods for the incompressible Navier-Stokes equations
Article history: Received 20 May 2015 Received in revised form 5 August 2015 Accepted 18 August 2015 Available online 10 September 2015
متن کاملArbitrary High Order Discontinuous Galerkin Schemes
In this paper we apply the ADER one step time discretization to the Discontinuous Galerkin framework for hyperbolic conservation laws. In the case of linear hyperbolic systems we obtain a quadrature-free explicit single-step scheme of arbitrary order of accuracy in space and time on Cartesian and triangular meshes. The ADERDG scheme does not need more memory than a first order explicit Euler ti...
متن کاملHigh-Order Discontinuous Galerkin Methods for CFD
In recent years it has become clear that the current computational methods for scientific and engineering phenomena are inadequate for many challenging problems. Examples of these problems are wave propagation, turbulent fluid flow, as well as problems involving nonlinear interactions and multiple scales. This has resulted in a significant interest in so-called high-order accurate methods, whic...
متن کاملA High Order Discontinuous Galerkin Method for 2D Incompressible Flows
In this pat)er we introduce a high order discontinuous Galerkin method for two dimensional incoinpressible flow in vorticity streamfunction fornnllation. The inonlentuni equation is treated exl)licitly, utilizing the efficiency of the discontimtous Galerkin method. The streanlflmction is obtained by a standard Poiss(m solver using (:ontinu(lus finite elenmnts. There is a natural matching betwee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2021
ISSN: ['1090-2716', '0021-9991']
DOI: https://doi.org/10.1016/j.jcp.2020.110040